
Computational growth of neurons



What is the objective of computational growth?
One of the objectives of computational neuroscience is to generate artificial models 
of the brain. 

In order to generate accurate models of the brain, at the level of detailed single cells, 
we need to populate brain regions with accurate cell morphologies in order to 
reproduce activity of neurons and their connectivity

However, not sufficient data are available of sufficiently good quality

The objective of computational generation of cells (neurons, glial, other cells) is to 
recreate the properties of biological cells 
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What is the objective of computational growth?
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Fully grown 
neocortex

Blue Brain Project



Traditional algorithms
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Statistical growth 
Traditionally, the computational generation of neurons started by a collection of 
simple rules with the aim to reproduce specific biological properties. For example, 
basic morphometrics:

● Number of branches
● Total length
● Maximum branch order
● Distribution of section lengths
● Distribution of angles

Were used as inputs to computational algorithms to generate neuronal morphologies
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Statistical growth 
Computer generation and quantitative 
morphometric analysis of virtual 
neurons (Ascoli et al. 2001)

An important goal in computational 
neuroanatomy is the complete and 
accurate simulation of neuronal 
morphology. We are developing 
computational tools to model 
three-dimensional dendritic structures 
based on sets of stochastic rules.
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Statistical growth 
ArborVitae algorithm flow chart. 
The symbol p indicates the phase 
number. The total length per phase 
L(p) is calculated from the number 
of branches and their average 
length (BrLp*BrBp). The 
probability of termination F(p) is 
calculated from the numbers of 
terminations and bifurcations 
[BrTp/ (BrTp+0.5*BrBp)].
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Statistical growth 
Example of neurons that were generated based on the distribution of their 
morphometrics. 
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Statistical growth 
Statistical validation of synthesized motoneuron morphologies
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Diffusion Limited Aggregation (DLA) 
Spatial embedding of neuronal trees modeled 
by diffusive growth, Luczac 2006

The relative importance of the intrinsic and 
extrinsic factors determining the variety of 
geometric shapes exhibited by dendritic trees 
remains unclear. This question was addressed 
by developing a model of the growth of 
dendritic trees based on diffusion-limited 
aggregation process.
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Diffusion Limited Aggregation (DLA) 
What is DLA?

Diffusion Limited Aggregation (DLA) is a 
“fractal” like pattern that emerges when particles 
move randomly and aggregate together. In DLA, 
particles are released into a space and move in 
straight lines until they collide with another 
particle or an aggregate. When a particle collides 
with an aggregate, it becomes a part of the 
aggregate and stops moving. Over time, as more 
particles are released, they continue to collide 
with the aggregate, causing it to grow in a 
fractal-like pattern.
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Diffusion Limited Aggregation (DLA) 
The shapes that can be generated based on this simple algorithms are not only 
artistically interesting, but can also approximate patterns that appear in biology:

Trees, Snowflakes, Neurons?
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Diffusion Limited Aggregation (DLA) 
Illustration of the DLA algorithm. (A) 
Randomly moving particles (black) 
stick irreversibly at their point of first 
contact with the aggregate (composed 
of particles 0–5). To each newly 
jointed particle a parent particle is 
assigned and both become connected 
by a line segment. (B) While the 
aggregate grows, the particles at the 
terminals are randomly deleted from 
the aggregate (pruning) during a 
specified time window.
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Diffusion Limited Aggregation (DLA) 
Generating neurons in 
ensemble. (A) Illustration of 
the initial condition for 
generating nine aggregates. (B) 
Generated granule cells (cells 
in corners are not shown for 
visualization clarity). 
Rectangular box represents a 
space limitation imposed on 
the growth of aggregates.
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Diffusion Limited Aggregation (DLA) 
Examples of real and generated 
neurons. (A and B) Examples of real 
and generated granule cells. (C and D) 
Examples of real and generated basal 
dendrites. (E and F) Examples of real 
and generated apical dendrites of 
pyramidal cells. The cell bodies are 
depicted by spheres.

The outgrowth properties are nicely 
captured, but the local details of more 
complex cells are hard to capture. 
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Diffusion Limited Aggregation (DLA) 
Examples of real and generated 
neurons. (A and B) Examples of real 
and generated axonal trees of 
interneurons. (C and D) Examples of 
real and generated Purkinje cells. The 
cell bodies are depicted by spheres.

Symmetrics properties of the trees are 
better captured by this algorithm
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Diffusion Limited Aggregation (DLA) 
Demonstration of the general 
applicability of the algorithm to 
model diverse types of tree structures 
(from left: pear tree, root and 
hornbeam; terminal branches are 
depicted as triangles to resemble 
leaves).
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TREES algorithm 
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One Rule to Grow Them All: A General Theory of Neuronal 
Branching and Its Practical Application

Cuntz et al. 2010
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One Rule to Grow Them All: A General Theory of Neuronal 
Branching and Its Practical Application

Understanding the principles governing axonal and dendritic branching is essential for unravelling the functionality of 
single neurons and the way in which they connect. Nevertheless, no formalism has yet been described which can capture the 
general features of neuronal branching. Here we propose such a formalism, which is derived from the expression of dendritic 
arborizations as locally optimized graphs. Inspired by Ramo ́ n y Cajal’s laws of conservation of cytoplasm and conduction 
time in neural circuitry, we show that this graphical representation can be used to optimize these variables. This approach 
allows us to generate synthetic branching geometries which replicate morphological features of any tested neuron. The 
essential structure of a neuronal tree is thereby captured by the density profile of its spanning field and by a single 
parameter, a balancing factor weighing the costs for material and conduction time. This balancing factor determines a 
neuron’s electrotonic compartmentalization. Additions to this rule, when required in the construction process, can be 
directly attributed to developmental processes or a neuron’s computational role within its neural circuit. The simulations 
presented here are implemented in an open-source software package, the ‘‘TREES toolbox,’’ which provides a general set of 
tools for analyzing, manipulating, and generating dendritic structure, including a tool to create synthetic members of any 
particular cell group and an approach for a model-based supervised automatic morphological reconstruction from 
fluorescent image stacks. These approaches provide new insights into the constraints governing dendritic architectures. They 
also provide a novel framework for modelling and analyzing neuronal branching structures and for constructing realistic 
synthetic neural networks.
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One Rule to Grow Them All
The connectivity and electrotonic 
properties of a neuronal tree.  (A) The tree 
consists of cylinders or frusta (red) 
connecting each two nodes along the 
directed edges (away from the root node, 
arrows). Branch points and termination 
points represent the topology (topological 
points). A branch is a set of continuation 
points between two topological points. The 
labelling of the nodes is unique following 
three principles: hierarchical sorting, 
continuous labelling preserving sub-tree 
consistency and topological sorting (see 
text). (B) Rearrangement of node locations 
on a sample tree. 
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One Rule to Grow Them All
(C) Applying topological sorting, a unique 
electrotonic equivalent tree can be 
constructed by mapping node label 
hierarchy on the branch angle (equivalent 
tree). (D) The adjacency matrix depicts the 
connectivity between the nodes of a tree. 
The corresponding electrotonic signature 
(current transfer from a node to another, 
i.e. the potential difference measured in one 
node as a result of a current injection into 
another) describes the dendritic 
compartmentalization (see text). The 
electrotonic signature corresponding to the 
20 µm resampled tree preserves the 
compartmentalization of the original tree. 
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One Rule to Grow Them All
(E) A one-dimensional string fully 
describes the topology once the nodes of a 
tree are sorted topologically. Green pieces 
represent branches ending with a branch 
point while black pieces end with a 
termination point. Branch lengths 
correspond to real metric length and their 
order follows the node label sorting. 
Because all representations observe the 
same continuous labelling, they preserve 
the sub-tree structure (a red transparent 
patch highlights one such sub-tree 
throughout all representations in (C–E)).
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One Rule to Grow Them All

Generating dendritic structures by constructing geometric spanning fields: I. the retinal starburst 
amacrine cell.  (A) Reconstruction of a starburst amacrine cell in the inner plexiform layer of the 
rabbit retina (data from [24]). (B) Synthetic starburst amacrine cell morphologies can be best 
obtained by distributing random carrier points along a density ring limited by a circular hull. (C) An 
example tree grown on random carrier points distributed according to B following the algorithm 
described in Figure 2. Spatial jitter was added to reproduce the wriggliness of the original structure. 
(D) A tree grown on exactly the same points as (C) with a lower balancing factor. 
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One Rule to Grow Them All

(E) The number of randomly distributed carrier points and the balancing factor bf determine the 
synthetically generated morphology. Here, the areas are plotted in which the synthetic trees match the 
original according to certain criteria (blue: total cable length ±200 µm; red: total number of branch 
points ±5; green: mean path length to the root ±3 µm). The area of overlap corresponds to a reasonable 
parameter set for the synthetic trees. (F–H) Branch order distribution, path length distribution and 
Sholl intersections are compared for the original tree (red) and for one sample synthetic tree (grey).
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Minimum spanning tree

26



Minimum spanning tree
A minimum spanning tree (MST) is a 
subset of the edges of a connected, 
edge-weighted undirected graph that 
connects all the vertices together, 
without any cycles and with the 
minimum possible total path length.  
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Minimum spanning tree

Example algorithm to generate 
MST from a graph

MST edge is the smallest for each 
set of edge cuts that disconnects the 
graph.

https://algs4.cs.princeton.edu/43mst/
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One Rule to Grow Them All

Generating neuronal branching structures using optimized graphs.  (A) The growth described by an 
extended minimum spanning tree algorithm (see text). Unconnected carrier points (red) are 
connected one by one to the nodes of a tree (black). Red dashed lines indicate three sample 
Euclidean distances to the nodes of the tree for sample point P. (B) Example trees grown on 
homogeneously distributed random carrier points in a circular hull starting from a root located at its 
centre (see top). Plotted as a function of the balancing factor bf, the trees range from perfect 
minimum spanning trees (left) to almost direct connections from the root to any point (right).
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One Rule to Grow Them All
Generating dendritic structures by 
constructing geometric spanning 
fields: II. the hippocampal dentate 
gyrus granule cell. (A) 
Reconstructions of four sample 
hippocampal granule cells. (B) The 
50 µm iso-distance volume hulls 
(black lines) around the set of all 
topological points (black dots) 
overlap in all dimensions. Overlay 
colours represent local density with 
same colormap as in Figure 3. (C) 
Examples of synthetically generated 
granule cells (based on the data in 
AB) with bf = 0.85. (D) 
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One Rule to Grow Them All

(E–G) Overlaid branch order distributions, path length distributions and Sholl 
intersections for original trees (red) and for synthetic trees with suitable 
parameter bf = 0.85 (black).
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One Rule to Grow Them All
A general strategy for generating 
synthetic morphologies: Cortical 
pyramidal cells.  (A) After rotating 
rat somatosensory cortex layer 2/3, 
4 and 5 pyramidal cells to overlap, 
the limits of their individual regions 
were extracted: black shaded boxes 
show the mean limits in XY for the 
apical region; the black empty boxes 
delineate one standard deviation 
away from the mean. Corresponding 
red boxes duplicate this procedure 
for the basal dendrites. 
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One Rule to Grow Them All
Cells are then scaled region-by-region to 
the mean limits of each region. Overlay 
colours describe local density 
(colormap see Figure 2D) of lumped 
topological points of scaled trees. (B) 
Same procedure for three groups of 
cortical pyramidal cells during 
development. (C) Construction stages 
of a sample layer 5 pyramidal cell 
according to spanning fields described 
in A. First the apical tuft is constructed, 
then oblique dendrites and finally the 
basal dendrite. Spatial jitter and 
diameter values are added subsequently.
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One Rule to Grow Them All
The interactions between neuronal 
branching and the network context. (A) 
Nine synthetic neuronal trees grown 
competitively on a sample square substrate 
of homogeneously distributed random 
carrier points: the competitive greedy 
growth results automatically in tiling of 
the available space. (B) Three out of 16 
neuronal trees grown competitively on 
random carrier points distributed on a 
ring: this simulates well the sharp borders 
of Purkinje cells in the cerebellum. 
Whether Purkinje cell dendrites actually 
tile in sagittal planes of the cerebellum 
remains to be determined. 
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One Rule to Grow Them All
(C) Hippocampal granule cells from 
Figure 4 were scaled and positioned 
along the contours of a human 
dentate gyrus obtained from a sketch 
by Camillo Golgi [31]. Growing 
synthetic CA3 hippocampal 
pyramidal cells competitively with the 
limits from the template resulted in 
realistic hippocampal pyramidal cells 
affected by mutual avoidance. 
Synthetic dendrites were overlaid on 
the background of the original sketch. 
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One Rule to Grow Them All
(D) Bipolar cells (black) in the retina were 
grown competitively to connect an array of 
photoreceptors (yellow) to an array of 
starburst amacrine cells (green, obtained 
using the algorithm in Figure 3). In such a 
case the full morphology of bipolar cells is 
determined by the context of the circuitry, 
after prescribing soma locations of the 
bipolar cells. For all panels of Figure 8 
precise scale bars would depend on the 
details of the preparations and were 
therefore omitted.
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One Rule to Grow Them All
Automated reconstruction of multiple 
cells using the greedy algorithm.  (A) 
Example of an additional application of 
the algorithm: automated model-based 
tree reconstruction from image stacks. 
Maximum intensity projection of tiled 
image stacks containing a sample sub-tree 
of a fluorescently labelled neuronal tree. 
The resulting binary matrix is then 
reduced to single points in space (green 
dots) via a skeletonization procedure. The 
points are used as carrier points for the 
growth algorithm to obtain the 
corresponding tree using the distance 
graph as an additional cost factor. 
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One Rule to Grow Them All
(B) Maximum intensity projections of 
tiled 2-photon fluorescent image 
stacks from primary visual cortex of a 
mouse expressing GFP in parvalbumin 
interneurons. Three layer 5 pyramidal 
neurons are also imaged; all cells were 
filled with a fluorescent dye Alexa 594 
via whole cell patch-clamp recording. 
Data courtesy of Kate Buchanan and 
Jesper Sjöström. (C) Corresponding 
reconstructions (with the interneuron 
in green) grown in a competitive 
manner on the image stacks after 
manual post-processing.
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Computational synthesis of cortical dendritic
morphologies

Kanari et al. 2022
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Computational synthesis of cortical dendritic morphologies
Neuronal morphologies provide the foundation for the electrical behavior of neurons, the 
connectomes they form, and the dynamical properties of the brain. Comprehensive neuron models 
are essential for defining cell types, discerning their functional roles, and investigating 
brain-disease-related dendritic alterations. However, a lack of understanding of the principles 
underlying neuron morphologies has hindered attempts to computationally synthesize 
morphologies for decades. We introduce a synthesis algorithm based on a topological descriptor of 
neurons, which enables the rapid digital reconstruction of entire brain regions from few reference 
cells. This topology-guided synthesis generates dendrites that are statistically similar to biological 
reconstructions in terms of morpho-electrical and connectivity properties and offers a significant 
opportunity to investigate the links between neuronal morphology and brain function across 
different spatiotemporal scales. Synthesized cortical networks based on structurally altered 
dendrites associated with diverse brain pathologies revealed principles linking branching properties 
to the structure of large-scale networks.
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Computational synthesis of cortical dendritic morphologies
(A) Overview of dendritic 
synthesis based on four stages 
of growth. (I) Soma generation 
and initiation of the dendrites 
on the soma surface. (II) 
Stochastic definition of 
bifurcation, termination, and 
elongation (III) based on 
topological descriptor. (IV) 
Diameter definition, as a final 
step, is based on the biological 
distributions and is subsequent 
to the branching steps.
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Computational synthesis of cortical dendritic morphologies

B. Dendritic elongation: during 
continuation the branch grows 
based on a segment length and 
direction. The direction is chosen 
as a combination of three 
parameters: randomness, 
memory (based on the previous 
directions within a branch), and 
targeting (based on the initial 
direction of a branch). 
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Computational synthesis of cortical dendritic morphologies
Validation of single-cell 
morpho-electrical properties. (A) 
Reconstructed layer 3 tufted pyramidal 
cells (blue) is used as input for 100 
synthesized L3_TPCs (red). (B) 
Comparison of topological persistence 
diagrams of the reconstructed cell and 
100 synthesized cells. (C) Comparison 
of 19 dendritic morphometrics 
(normalized based on the mean 
morphological feature values for the 
L3_TPC population) for a 
reconstructed and a synthesized cell.
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Computational synthesis of cortical dendritic morphologies
(D and E) The reconstructed (D) 
and synthesized cell (E) are 
electrically simulated according to a 
model optimized on the electrical 
properties of L3_TPC cells. (F and 
G) The electrical response (120% 
threshold current step) of the 
reconstructed cell (F) is compared 
with the synthesized cell’s (G). (H) 
Comparison of 15 electrical 
properties of dendrites (normalized 
based on the mean electrical feature 
values for the L3_TPC population.
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Computational synthesis of cortical dendritic morphologies
Comparison of reconstructed and 
synthesized dendritic shapes  (A) 
Reconstructed (blue) and synthesized 
(red) pyramidal cell dendrites of all 
rodent cortical m-types from layers 2 to 
6.  (B) Reconstructed (blue) and 
synthesized (red) dendrites of rodent 
cortical interneurons of layers 1 to 6. Not 
all interneuron morphology types are 
reported, as they differ mainly in their 
axonal branches and not significantly on 
the basal dendrites, as illustrated.  (C) A 
cortical column of synthesized dendrites 
of all layers, colors correspond to cortical 
layers from 1 to 6.

45



Computational synthesis of cortical dendritic morphologies
Morphological and electrical 
validation of synthesized dendrites  
(A–F) A set of L5_TPC:C 
reconstructions (A) (blue, 30 cells) 
is used as input to generate a 
population of synthesized cells of 
the same type (C) (red, 100 cells). 
The violin plots of morphological 
properties (B) for apical (top) and 
basal (bottom) dendrites of the 
reconstructed cell (in blue) and 
the synthesized cells (in red) are 
reported. 
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Computational synthesis of cortical dendritic morphologies
Electrical traces (E) from simulation of 
ten reconstructed (D) (blue) and ten 
synthesized morphologies (F) (red) are 
compared with the reference trace for the 
optimized model (black). Step current 
simulation at 200% of threshold current 
illustrates similar frequency in firing 
patterns of synthesized and reconstructed 
cells. Back-propagation action potential 
illustrates similar spike shape between 
reconstructed and synthesized 
morphologies. (G) Validation of the 
electrical features extracted from the 
traces of step current simulation (E) of 
the reconstructed (blue) and the 
synthesized (red) cells using Z scores 
with respect to experimental features.
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Computational synthesis of cortical dendritic morphologies
Morpho-electrical validation. A. 
Morphological validation of synthesized cells 
per mtype (the sample size is shown in 
parenthesis, mtypes with fewer than 5 
exemplars are annotated in red). Validation 
(MVS) scores averaged over all features for 
each mtype (top) for reconstructed (blue) 
and synthesized (red) cells. Comparison of 
average (MVS) scores between 
reconstructed - synthesized cells (top) and 
within reconstructed cells (bottom) for basal 
and apical dendrites. B. MVS scores between 
z-scores of reconstructed and synthesized 
cells’ electrical features for each 
morpho-electrical type.
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Computational synthesis of cortical dendritic morphologies
Generalization of topological 
synthesis for varying cortical 
thickness. (A) Exemplar biological 
reconstructions of three layer 4 
pyramidal cell types: L4_TPC (gray), 
L4_UPC (deep blue), L4_SSC (light 
blue), and the corresponding 
persistence barcodes, used as synthesis 
input. (B) Scaling of input persistence 
barcodes and resulting synthesized 
dendrites ([1.0, 0.8, 0.6, 0.5] of original 
barcodes). The scaled (from 1.0 to 0.2) 
barcodes of synthesized L4_TPC 
apicals presented at the bottom.
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Computational synthesis of cortical dendritic morphologies
(C–E) Total dendritic length of layer 
4 cells, as a function of shrinkage 
factor for basal (bottom) and apical 
(top) dendrites compared with 
expected values of scaled biological 
lengths (black dashed, computed as 
scaling factor multiplied by total 
length of reconstructed dendrites) 
and synthesized (gray continuous) 
dendrites of L4_TPC (C), L4_UPC 
(D), and L4_SSC (E). Note that 
L4_SSC do not have apical dendrites 
even though they are excitatory cells, 
therefore only basal dendrite statistics 
are shown.
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Computational synthesis of cortical dendritic morphologies
Connectivity of synthesized and 
reconstructed networks. (A) The 
connectivity properties of a 
reconstructed microcircuit (Markram et 
al., 2015).  (B) The connectivity 
properties of a microcircuit of fully 
synthesized dendrites, and 
reconstructed axons.  (C) Difference 
between reconstructed and synthesized 
microcircuits. (1) The connectomes of 
the microcircuits grouped by m-type. 
(2) Connection probability. (3) 
Synapses per connection. 
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Computational synthesis of cortical dendritic morphologies
Medical applications. (A–C) 
Connectivity of synthesized networks 
based on structural alterations of 
dendritic morphologies. Schematic 
representation and examples of layer 
5 synthesized pyramidal cells (A), in 
comparison with cut dendritic 
branches (B) (lengths above 10, 100, 
200, and 400 μm), and shrunk 
dendrites (C) (98%, 90%, 60%, and 
30%). Connectome (presented in 
subpanel 1) of each synthesized 
microcircuit: (A) synthesized, (B) cut 
branches of lengths above 400 μm, 
(C) shrunk dendrites 10%.
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Computational synthesis of cortical dendritic morphologies
(D) Total number of 
connections for alterations 
of type B (red) and C (blue) 
compared with synthesized 
network A (black).  (E) 
Topological analysis of 
corresponding networks; 
distribution of directed 
simplices for alterations of 
type B (red, top) and C 
(blue, bottom). 
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Computational synthesis of cortical dendritic morphologies
(F) Morphological characteristics and 
connectivity with respect to 
alterations of type B (top) and C 
(bottom). The main branches form the 
majority of connections (top) and 
larger dendritic extents (bottom) form 
more connections. Colormap 
corresponds to normalized number of 
connections: from maximum number 
of connections (3.5 × 108 in red) to 
minimum (107 in blue).
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Computational synthesis of cortical dendritic morphologies
Comparison of synthesis methods. 
Comparison of synthesized cells for 
different synthesis methods. A. 
Density and marginal projections of 
persistence diagrams for 
reconstructed cells (I), synthesized 
cells (II), synthesized without 
correlation of branching / termination 
(III), and synthesized without 
correlation between branching and 
bifurcation angles (IV). B. Examples 
for the same data. C. Respective 
persistence diagrams. 
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Computational synthesis of cortical dendritic morphologies
Morphological diversity. Comparison of 
dendrites from 44 reconstructed L4 TPC cells 
(in blue) to synthesized dendrites (based on 
subsets of increasing numbers of cells from 
the original population used as inputs: from 2 
to 15, red shades from lighter to darker). 
Comparison of path distance (A, direct input) 
and branch order (B, emergent property) for 
basal dendrites. Comparison of path distances 
(D, direct input) and radial distance (E, 
emergent property) for apical dendrites. The 
original distributions are well approximated 
by a subset of input cells (15 out of 44). 
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Computational synthesis of cortical dendritic morphologies
C. Average statistical 
(Kolmogorov-Smirnov) distance for 
numerous morphometrics, within 
reconstructed cells (in blue) and 
between reconstructed and 
synthesized cells (in red) as a 
function of increasing synthesis 
inputs. F. TMD based classification of 
three L4 PC types for reconstructed 
(top left, blue) and synthesized 
(bottom right, red) cells. 
Classification accuracy is same or 
higher for the synthesized population.
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Questions?
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