Computational growth of neurons



What is the objective of computational growth?

One of the objectives of computational neuroscience is to generate artificial models
of the brain.

In order to generate accurate models of the brain, at the level of detailed single cells,
we need to populate brain regions with accurate cell morphologies in order to
reproduce activity of neurons and their connectivity

However, not sufficient data are available of sufficiently good quality

The objective of computational generation of cells (neurons, glial, other cells) is to
recreate the properties of biological cells






Traditional algorithms



Statistical growth

Traditionally, the computational generation of neurons started by a collection of
simple rules with the aim to reproduce specific biological properties. For example,
basic morphometrics:

Number of branches

Total length

Maximum branch order
Distribution of section lengths

Distribution of angles

Were used as inputs to computational algorithms to generate neuronal morphologies



Statistical growth

Computer generation and quantitative
morphometric analysis of virtual
neurons (Ascoli et al. 2001)

An important goal in computational
neuroanatomy is the complete and
accurate simulation of neuronal
morphology. We are developing
computational tools to model
three-dimensional dendritic structures
based on sets of stochastic rules.
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Statistical growth

ArborVitae algorithm flow chart.
The symbol p indicates the phase
number. The total length per phase
L(p) is calculated from the number
of branches and their average
length (BrLp*BrBp). The
probability of termination F(p) is
calculated from the numbers of
terminations and bifurcations

[BrTp/ (BrTp+0.5*BrBp)].
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Statistical growth

Example of neurons that were generated based on the distribution of their
morphometrics.




Statistical growth

Statistical validation of synthesized motoneuron morphologies
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Diffusion Limited Aggregation (DLA)

Spatial embedding of neuronal trees modeled
by diffusive growth, Luczac 2006

The relative importance of the intrinsic and
extrinsic factors determining the variety of
geometric shapes exhibited by dendritic trees
remains unclear. This question was addressed
by developing a model of the growth of
dendritic trees based on diffusion-limited
aggregation process.

fully grown aggregates
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Diffusion Limited Aggregation (DLA)

What is DLA?

Diffusion Limited Aggregation (DLA) is a
“fractal” like pattern that emerges when particles
move randomly and aggregate together. In DLA,
particles are released into a space and move in
straight lines until they collide with another
particle or an aggregate. When a particle collides
with an aggregate, it becomes a part of the
aggregate and stops moving. Over time, as more
particles are released, they continue to collide
with the aggregate, causing it to grow in a
fractal-like pattern.

Wikipedia
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Diffusion Limited Aggregation (DLA)

The shapes that can be generated based on this simple algorithms are not only
artistically interesting, but can also approximate patterns that appear in biology:

Trees, Snowflakes, Neurons?
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Diffusion Limited Aggregation (DLA)

Generating neuron

[llustration of the DLA algorithm. (A)
Randomly moving particles (black) /-
stick irreversibly at their point of first |Gl g
contact with the aggregate (composed
of particles 0-5). To each newly
jointed particle a parent particle is
assigned and both become connected
by a line segment. (B) While the
aggregate grows, the particles at the
terminals are randomly deleted from
the aggregate (pruning) during a
specified time window.

Diffusion-Limited Aggregate
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Diffusion Limited Aggregation (DLA)

Generating neurons in ::u?i:;o:r:a '3?3'&3% AlyQrovn aoBreERe
ensemble. (A) Illustration of
the initial condition for
generating nine aggregates. (B)
Generated granule cells (cells
in corners are not shown for
visualization clarity).

Rectangular box represents a
space limitation imposed on

the growth of agoregates. Sesdator
STOW 8818 aggregates
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Diffusion Limited Aggregation (DLA)

generated granule ce

Examples of real and generated
neurons. (A and B) Examples of real

and generated granule cells. (C and D)

Examples of real and generated basal

dendrites. (E and F) Examples of real

and generated apical dendrites of

pyramidal cells. The cell bodies are achy bessl duncities '
depicted by spheres. w §§!ai Zﬂgi generated apical dendrites
The outgrowth properties are nicely 100 \ ’)

captured, but the local details of more e i Gt
complex cells are hard to capture.
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Diffusion Limited Aggregation (DLA)

Examples of real and generated
neurons. (A and B) Examples of real
and generated axonal trees of
interneurons. (C and D) Examples of
real and generated Purkinje cells. The
cell bodies are depicted by spheres.

Symmetrics properties of the trees are
better captured by this algorithm
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Diffusion Limited Aggregation (DLA)

Demonstration of the general
applicability of the algorithm to
model diverse types of tree structures
(from left: pear tree, root and
hornbeam; terminal branches are
depicted as triangles to resemble
leaves).

enerated trees and roo
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TREES algorithm



One Rule to Grow Them All: A General Theory of Neuronal
Branching and Its Practical Application

Cuntz et al. 2010
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One Rule to Grow Them All: A General Theory of Neuronal
Branching and Its Practical Application

Understanding the principles governing axonal and dendritic branching is essential for unravelling the functionality of
single neurons and the way in which they connect. Nevertheless, no formalism has yet been described which can capture the
general features of neuronal branching. Here we propose such a formalism, which is derived from the expression of dendritic
arborizations as locally optimized graphs. Inspired by Ramo "n y Cajal’s laws of conservation of cytoplasm and conduction
time in neural circuitry, we show that this graphical representation can be used to optimize these variables. This approach
allows us to generate synthetic branching geometries which replicate morphological features of any tested neuron. The
essential structure of a neuronal tree is thereby captured by the density profile of its spanning field and by a single
parameter, a balancing factor weighing the costs for material and conduction time. This balancing factor determines a
neuron’s electrotonic compartmentalization. Additions to this rule, when required in the construction process, can be
directly attributed to developmental processes or a neuron’s computational role within its neural circuit. The simulations
presented here are implemented in an open-source software package, the “TREES toolbox,” which provides a general set of
tools for analyzing, manipulating, and generating dendritic structure, including a tool to create synthetic members of any
particular cell group and an approach for a model-based supervised automatic morphological reconstruction from
fluorescent image stacks. These approaches provide new insights into the constraints governing dendritic architectures. They
also provide a novel framework for modelling and analyzing neuronal branching structures and for constructing realistic
synthetic neural networks.
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One Rule to Grow Them All

The  connectivity and  electrotonic
properties of a neuronal tree. (A) The tree
consists of cylinders or frusta (red)
connecting each two nodes along the
directed edges (away from the root node,
arrows). Branch points and termination
points represent the topology (topological
points). A branch is a set of continuation
points between two topological points. The
labelling of the nodes is unique following
three principles: hierarchical sorting,
continuous labelling preserving sub-tree
consistency and topological sorting (see
text). (B) Rearrangement of node locations
on a sample tree.
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One Rule to Grow Them All

(C) Applying topological sorting, a unique
electrotonic equivalent tree can Dbe
constructed by mapping node label
hierarchy on the branch angle (equivalent
tree). (D) The adjacency matrix depicts the
connectivity between the nodes of a tree.
The corresponding electrotonic signature
(current transfer from a node to another,
i.e. the potential difference measured in one
node as a result of a current injection into
another) describes the dendritic
compartmentalization (see text). The
electrotonic signature corresponding to the
20 pm resampled tree preserves the
compartmentalization of the original tree.
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One Rule to Grow Them All

(E) A one-dimensional string fully
describes the topology once the nodes of a
tree are sorted topologically. Green pieces
represent branches ending with a branch
point while black pieces end with a
termination  point. Branch  lengths
correspond to real metric length and their
order follows the node label sorting.
Because all representations observe the
same continuous labelling, they preserve
the sub-tree structure (a red transparent
patch  highlights one such sub-tree
throughout all representations in (C-E)).
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One Rule to Grow Them All

starburst amacrine cells

Generating dendritic structures by constructing geometric spanning fields: I. the retinal starburst
amacrine cell. (A) Reconstruction of a starburst amacrine cell in the inner plexiform layer of the
rabbit retina (data from [24]). (B) Synthetic starburst amacrine cell morphologies can be best
obtained by distributing random carrier points along a density ring limited by a circular hull. (C) An
example tree grown on random carrier points distributed according to B following the algorithm
described in Figure 2. Spatial jitter was added to reproduce the wriggliness of the original structure.
(D) A tree grown on exactly the same points as (C) with a lower balancing factor.
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One Rule to Grow Them All
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(E) The number of randomly distributed carrier points and the balancing factor bf determine the
synthetically generated morphology. Here, the areas are plotted in which the synthetic trees match the
original according to certain criteria (blue: total cable length +200 um; red: total number of branch
points +5; green: mean path length to the root +3 um). The area of overlap corresponds to a reasonable
parameter set for the synthetic trees. (F—H) Branch order distribution, path length distribution and
Sholl intersections are compared for the original tree (red) and for one sample synthetic tree (grey).
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Minimum spanning tree
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Minimum spanning tree

A minimum spanning tree (MST) is a
subset of the edges of a connected,
edge-weighted undirected graph that
connects all the vertices together,
without any cycles and with the
minimum possible total path length.
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Minimum spanning tree

Example algorithm to generate
MST from a graph

MST edge is the smallest for each
set of edge cuts that disconnects the
graph.

https://algs4.cs.princeton.edu/43mst/
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One Rule to Grow Them All

balancing factor bf

—>

Generating neuronal branching structures using optimized graphs. (A) The growth described by an
extended minimum spanning tree algorithm (see text). Unconnected carrier points (red) are
connected one by one to the nodes of a tree (black). Red dashed lines indicate three sample
Euclidean distances to the nodes of the tree for sample point P. (B) Example trees grown on
homogeneously distributed random carrier points in a circular hull starting from a root located at its
centre (see top). Plotted as a function of the balancing factor bf, the trees range from perfect
minimum spanning trees (left) to almost direct connections from the root to any point (right).
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One Rule to Grow Them All

Generating dendritic structures by
constructing geometric spanning
fields: II. the hippocampal dentate
gyrus granule cell. (A)
Reconstructions of four sample
hippocampal granule cells. (B) The
50 pm iso-distance volume hulls
(black lines) around the set of all
topological points (black dots)
overlap in all dimensions. Overlay
colours represent local density with
same colormap as in Figure 3. (C)
Examples of synthetically generated
granule cells (based on the data in
AB) with bf=0.85. (D)

hippocampal granule cells
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One Rule to Grow Them All
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(E—G) Overlaid branch order distributions, path length distributions and Sholl
intersections for original trees (red) and for synthetic trees with suitable
parameter bf=0.85 (black).
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One Rule to Grow Them All

A general strategy for generating
synthetic morphologies: Cortical
pyramidal cells. (A) After rotating
rat somatosensory cortex layer 2/3,
4 and 5 pyramidal cells to overlap,
the limits of their individual regions
were extracted: black shaded boxes
show the mean limits in XY for the
apical region; the black empty boxes
delineate one standard deviation
away from the mean. Corresponding
red boxes duplicate this procedure
for the basal dendrites.

A B

cortical pyramidal cells development of perirhinal cortical pyramidal cells

layer 2/3 layer 4 layer 5 - P36 - P44

Cc

construction stages of a layer 5 pyramidal cell

apical tuft oblique dendrites basal dendrites spatial jitter and
diameter mapping
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One Rule to Grow Them All

Cells are then scaled region-by-region to
the mean limits of each region. Overlay
colours  describe  local  density
(colormap see Figure 2D) of lumped
topological points of scaled trees. (B)
Same procedure for three groups of
cortical ~ pyramidal cells  during
development. (C) Construction stages
of a sample layer 5 pyramidal cell
according to spanning fields described
in A. First the apical tuft is constructed,
then oblique dendrites and finally the
basal dendrite. Spatial jitter and
diameter values are added subsequently.

A B

cortical pyramidal cells development of perirhinal cortical pyramidal cells

100 pm

layer 2/3 layer 4 layer 5 P8 - P12 P36 - P44

[

construction stages of a layer 5 pyramidal cell

|

apical tuft oblique dendrites basal dendrites spatial jitter and
diameter mapping
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One Rule to Grow Them All

A

competitive growth on homogeneous
substrate

The interactions between neuronal
branching and the network context. (A)
Nine synthetic neuronal trees grown
competitively on a sample square substrate
of homogeneously distributed random
carrier points: the competitive greedy
growth results automatically in tiling of
the available space. (B) Three out of 16
neuronal trees grown competitively on
random carrier points distributed on a
ring: this simulates well the sharp borders
of Purkinje cells in the cerebellum.
Whether Purkinje cell dendrites actually
tile in sagittal planes of the cerebellum
remains to be determined.

B

cerebellar Purkinje cells
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One Rule to Grow Them All

A B
competitive growth on homogeneous  cerebellar Purkinje cells
substrate

(C) Hippocampal granule cells from
Figure 4 were scaled and positioned
along the contours of a human
dentate gyrus obtained from a sketch
by Camillo Golgi [31]. Growing
synthetic CA3 hippocampal
pyramidal cells competitively with the
limits from the template resulted in
realistic hippocampal pyramidal cells
affected by mutual avoidance.
Synthetic dendrites were overlaid on
the background of the original sketch.

hippocampal pyramidal cells
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One Rule to Grow Them All

(D) Bipolar cells (black) in the retina were
grown competitively to connect an array of
photoreceptors (yellow) to an array of
starburst amacrine cells (green, obtained
using the algorithm in Figure 3). In such a
case the full morphology of bipolar cells is
determined by the context of the circuitry,
after prescribing soma locations of the
bipolar cells. For all panels of Figure 8
precise scale bars would depend on the
details of the preparations and were
therefore omitted.

A

competitive growth on homogeneous
substrate

B

cerebellar Purkinje cells
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One Rule to Grow Them All

Automated reconstruction of multiple
cells using the greedy algorithm. (A)
Example of an additional application of
the algorithm: automated model-based
tree reconstruction from image stacks.
Maximum intensity projection of tiled
image stacks containing a sample sub-tree
of a fluorescently labelled neuronal tree.
The resulting binary matrix is then
reduced to single points in space (green
dots) via a skeletonization procedure. The
points are used as carrier points for the
growth  algorithm to obtain the
corresponding tree using the distance
graph as an additional cost factor.

37



One Rule to Grow Them All

(B) Maximum intensity projections of
tiled 2-photon fluorescent image
stacks from primary visual cortex of a
mouse expressing GFP in parvalbumin
interneurons. Three layer 5 pyramidal
neurons are also imaged; all cells were
filled with a fluorescent dye Alexa 594
via whole cell patch-clamp recording.
Data courtesy of Kate Buchanan and
Jesper Sjostrom. (C) Corresponding
reconstructions (with the interneuron
in green) grown in a competitive
manner on the image stacks after
manual post-processing.
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Computational synthesis of cortical dendritic
morphologies

Kanari et al. 2022
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Computational synthesis of cortical dendritic morphologies

Neuronal morphologies provide the foundation for the electrical behavior of neurons, the
connectomes they form, and the dynamical properties of the brain. Comprehensive neuron models
are essential for defining cell types, discerning their functional roles, and investigating
brain-disease-related dendritic alterations. However, a lack of understanding of the principles
underlying neuron morphologies has hindered attempts to computationally synthesize
morphologies for decades. We introduce a synthesis algorithm based on a topological descriptor of
neurons, which enables the rapid digital reconstruction of entire brain regions from few reference
cells. This topology-guided synthesis generates dendrites that are statistically similar to biological
reconstructions in terms of morpho-electrical and connectivity properties and offers a significant
opportunity to investigate the links between neuronal morphology and brain function across
different spatiotemporal scales. Synthesized cortical networks based on structurally altered
dendrites associated with diverse brain pathologies revealed principles linking branching properties
to the structure of large-scale networks.
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Computational synthesis of cortical dendritic morphologies

A Synthesis method overview

(A) Overview of dendritic

synthesis base d on fOllI‘ sta ges I. Initiation of dendrites on soma  |I. Dendritic branching

of growth. (I) Soma generation Continue

and initiation of the dendrites

on the soma surface. (II) @ Uil
Stochastic definition of « Contintn '

bifurcation, termination, and d N it

elongation (III) based on
topological descriptor. (IV)
Diameter definition, as a final
step, is based on the biological
distributions and is subsequent
to the branching steps.
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p: Randomness T Targating

=L, Direction
“ ¥ colomap




Computational synthesis of cortical dendritic morphologies

B Topology based branching probabilities

B. Dendritic elongation: during 4
Synthesized tree
continuation the branch grows
based on a segment length and
direction. The direction is chosen
as a combination of three
parameters: randomness, Persistence Barcode
memory (based on the previous
directions within a branch), and

targeting (based on the initial

Proability definition

direction of a branch).

Path distance from soma
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Computational synthesis of cortical dendritic morphologies

Validation of single-cell
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Computational synthesis of cortical dendritic morphologies

(D and E) The reconstructed (D)
and synthesized cell (E) are
electrically simulated according to a
model optimized on the electrical
properties of L3_TPC cells. (F and
G) The electrical response (120%
threshold current step) of the
reconstructed cell (F) is compared
with the synthesized cell’s (G). (H)
Comparison of 15 electrical
properties of dendrites (normalized
based on the mean electrical feature
values for the L3_TPC population.

D Reconstructed

E Synthesized

F 120% threshold current

Voltage (mV)

G 120% threshold current

Voltage (mV)

H L3 TPC (electrical features)

APWaveform AHP depth

APWaveformAP amplitude
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IV voltage deflection
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Time: () Normalized difference)

44



Computational synthesis of cortical dendritic morphologies

A Pyramidal cells of all m-types

Comparison of reconstructed and
synthesized dendritic shapes (A)
Reconstructed (blue) and synthesized
(red) pyramidal cell dendrites of all
rodent cortical m-types from layers 2 to
6. (B) Reconstructed (blue) and
synthesized (red) dendrites of rodent
cortical interneurons of layers 1 to 6. Not
all interneuron morphology types are
reported, as they differ mainly in their
axonal branches and not significantly on
the basal dendrites, as illustrated. (C) A
cortical column of synthesized dendrites
of all layers, colors correspond to cortical
layers from 1 to 6.

Layer Il

cccccccccccccc

[ Synthesized cells per layer
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Computational synthesis of cortical dendritic morphologies

Morphological and  electrical
validation of synthesized dendrites
(A-F) A set of L5_TPC:.C
reconstructions (A) (blue, 30 cells)
is used as input to generate a
population of synthesized cells of
the same type (C) (red, 100 cells).
The violin plots of morphological
properties (B) for apical (top) and
basal (bottom) dendrites of the
reconstructed cell (in blue) and
the synthesized cells (in red) are
reported.
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Computational synthesis of cortical dendritic morphologies

Electrical traces (E) from simulation of

D Reconstructed E Electrical simulation traces F Synthesized G Scores of e-features
ten reconstructed (D) (blue) and ten LEPG 5P o
synthesized morphologies (F) (red) are Back propagation action potential | Ty e
compared with the reference trace for the | S L womsm

AP_amplitude

optimized model (black). Step current
simulation at 200% of threshold current
illustrates similar frequency in firing —
patterns Of SyntheSized and reconStruCted Step current simulation at 200% of threshold current e
cells. Back-propagation action potential
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morphologies. (G) Validation of the g ~
electrical features extracted from the C T g e o T
traces of step current simulation (E) of Reconstructed

mmmm Synthesized

the reconstructed (blue) and the
synthesized (red) cells using Z scores
with respect to experimental features.
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Computational synthesis of cortical dendritic morphologies

Morpho-electrical validation. A. Aoprobp SRS per ey T S
Morphological validation of synthesized cells

per mtype (the sample size is shown in
parenthesis, mtypes with fewer than 5
exemplars are annotated in red). Validation
(MVS) scores averaged over all features for
each mtype (top) for reconstructed (blue)
and synthesized (red) cells. Comparison of
average (MVS) scores between
reconstructed - synthesized cells (top) and
within reconstructed cells (bottom) for basal
and apical dendrites. B. MVS scores between
z-scores of reconstructed and synthesized
cells’ electrical features for each
morpho-electrical type. N Nor-exiing meype
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Computational synthesis of cortical dendritic morphologies

Generalization of topological
synthesis for varying cortical
thickness. (A) Exemplar biological
reconstructions of three layer 4
pyramidal cell types: L4_TPC (gray),
L4_UPC (deep blue), L4_SSC (light
blue), and the corresponding
persistence barcodes, used as synthesis
input. (B) Scaling of input persistence
barcodes and resulting synthesized
dendrites ([1.0, 0.8, 0.6, 0.5] of original
barcodes). The scaled (from 1.0 to 0.2)
barcodes of synthesized L4_TPC
apicals presented at the bottom.
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Computational synthesis of cortical dendritic morphologies

(C-E) Total dendritic length of layer
4 cells, as a function of shrinkage
factor for basal (bottom) and apical
(top) dendrites compared with
expected values of scaled biological
lengths (black dashed, computed as
scaling factor multiplied by total
length of reconstructed dendrites)
and synthesized (gray continuous)
dendrites of L4_TPC (C), L4_UPC
(D), and L4_SSC (E). Note that
L4_SSC do not have apical dendrites
even though they are excitatory cells,
therefore only basal dendrite statistics
are shown.

A Reconstructed dendrites
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Computational synthesis of cortical dendritic morphologies

A . . B . . .. C .
Reconstructed microcircuit Synthesized microcircuit Difference between
reconstructed - synthesized

Connectivity of synthesized and L Comecka: o mumbe o syrapsetween 1 an st syt s
reconstructed networks. (A) The ' :
connectivity properties of a
reconstructed microcircuit (Markram et
al., 2015). (B) The connectivity
properties of a microcircuit of fully
synthesized dendrites, and
reconstructed axons. (C) Difference
between reconstructed and synthesized | | |
microcircuits. (1) The connectomes of s pryfpvp o
the microcircuits grouped by m-type.

(2) Connection probability. (3)
Synapses per connection.
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g g
[+ o
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Presynaptic
Presynaptic

Postsynaptic Postsynaptic Postsynaptic
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Computational synthesis of cortical dendritic morphologies

Medical applications. (A-C)
Connectivity of synthesized networks
based on structural alterations of
dendritic morphologies. Schematic
representation and examples of layer
5 synthesized pyramidal cells (A), in
comparison with cut dendritic
branches (B) (lengths above 10, 100,
200, and 400 pm), and shrunk
dendrites (C) (98%, 90%, 60%, and
30%). Connectome (presented in
subpanel 1) of each synthesized
microcircuit: (A) synthesized, (B) cut
branches of lengths above 400 pm,
(C) shrunk dendrites 10%.

A Synthesized dendrites

A1 Connectome

B Dendrites - cut branches

B1 connectome

C  Dendrites - shrunk branches
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Computational synthesis of cortical dendritic morphologies

D cConnectivity statistics E  Topology analysis
(D) Total number of

Connectivity of cut dendritic branches Distribution of simplices for cut dendrites

connections for alterations
of type B (red) and C (blue)
compared with synthesized

network A (black). (E) Memoides | Smisaneskn

TOPOIOglcal analySIS Of Connectivity of shrunk dendritic branches Distribution of simplices for shrunk dendrites
corresponding networks;

Cut branches 500
Cut branches 400
Cut branches 300

— Cut branches 10
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Q Ee
£ =
= =
= =2
o]
]
'_

Shrunk 10%

distribution of directed
simplices for alterations of = SRR
type B (red, top) and C

(blue, bottom).
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Computational synthesis of cortical dendritic morphologies

F cConnectivity vs. morphology

(F) Morphological characteristics and

Persistence diagram

connectivity with respect to

alterations of type B (top) and C %g
(bottom). The main branches form the %é
majority of connections (top) and : o. :Oo T
larger dendritic extents (bottom) form P W

Persistence diagram

more connections. Colormap
corresponds to normalized number of
connections: from maximum number

Start radial
distance from soma

of connections (3.5 x 108 in red) to

5 o o 0 500 1,0001,500
minimum (107 in blue). —

distance from soma




Computational synthesis of cortical dendritic morphologies

C. Persistence diagram

A. Branchmg densites B I. Biological reconstructions

Comparison of synthesis methods.

Comparison of synthesized cells for // ‘

different synthesis methods. A.

Density and marginal projections of ey I Synthesized cels
persistence diagrams for /

reconstructed cells (I), synthesized s’ L

cells (II), synthesized without LA T |
correlation of branching / termination —_— g

(III), and synthesized without " L

correlation between branching and
bifurcation angles (IV). B. Examples
for the same data. C. Respective
persistence diagrams.

IV. Marginal bifurcation angles
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Computational synthesis of cortical dendritic morphologies

Morphological diversity. Comparison of
. A Basal dendrite's path distances
dendrites from 44 reconstructed L4 TPC cells | SR

— Synthesized (# input 15)
-~ Synthesized (# input 10)

(in blue) to synthesized dendrites (based on go. Seses ot
Synthesized (i input 5
Synthesized (# input 4)

subsets of increasing numbers of cells from §000s| Synsid ¢t 9

Synthesized (# input 2)

the original population used as inputs: from 2
to 15, red shades from lighter to darker). ) A

Section path distances (um)

Comparison of path distance (A, direct input)

D Basal dendrites branch orders

and branch order (B, emergent property) for 5
e i€
basal dendrites. Comparison of path distances g 10
< 08
(D, direct input) and radial distance (E, § oe
: : g o4
emergent property) for apical dendrites. The § oz|
original distributions are well approximated v 6 8 01

Section branch orders

by a subset of input cells (15 out of 44).

B Apical dendrite's path distances

Proportion of sections

m

Proportion of sections
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Section radial distances (um)
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Computational synthesis of cortical dendritic morphologies

C. Average statistical
(Kolmogorov-Smirnov) distance for
numerous morphometrics, within
reconstructed cells (in blue) and
between reconstructed and
synthesized cells (in red) as a
function of increasing synthesis
inputs. E TMD based classification of
three L4 PC types for reconstructed
(top left, blue) and synthesized
(bottom right, red) cells.
Classification accuracy is same or

higher for the synthesized population.

C Morphological statistical distances
0.5 Synthesized basal dendrites
—— Synthesized apical dendrites
== Reconstructed basal dendrites
-~ — Reconstructed apical dendrites

KS - average distances
© o o
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Questions?
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